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In this paper we sketch a probabilistic particle approach requiring no separate 
concept of wave to obtain interference. We describe in some detail how things 
work from a physical standpoint and show with a number of figures how the 
standard wave concepts are developed from purely particle random walks. For 
the wave concepts we have in each case a matching probability concept. The 
preliminary theory developed here is qualitative and stresses the physical 
character of the assumptions. In particular, we show that the periodic behavior 
of light is derived from the source and not from individual photons. 

1. I N T R O D U C T I O N  

It is a famil iar  and  classical aspect of  the history of  q u a n t u m  mechan-  

ics that  f rom the beginning  it has been felt that  the complementar i ty  of  

particles and  waves mus t  be accepted and  used th roughou t  the theory. 

Depend ing  u p o n  the par t icular  experiment,  light rays are to be thought  of  

as either particles or waves. A typical, bu t  impor t an t  quo ta t ion  from the 

early days is the following one f rom Heisenberg. 

From these experiments it is seen that both matter and radiation possess a 
remarkable duality of character, as they sometimes exhibit the properties of 
waves, at other times those of particles. Now it is obvious that a thing cannot 
be a form of wave motion and composed of particles at the same time--the two 
concepts are too different... The solution of the difficulty is that the two mental 
pictures which experiments lead us to form--the one of particles, the other of 
waves--are both incomplete and have only the validity of analogies which are 
accurate only in limiting cases. (Heisenberg, 1930, p. 10) 

The purpose  of  this paper  is to develop a probabil is t ic  particle 

approach  requir ing no  separate concept of  wave as an  approach to 
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interference. The key idea is to use a random walk from which can be 
derived as a limit a standard wave equation, in particular, the scalar 
Huygens-Helmholtz wave equation, but the mathematical details of the 
derivation cannot be presented here. We describe in some detail how things 
work from a physical standpoint and show with a number of figures how 
the standard wave concepts are developed in finite approximation from 
purely particle random walks. One feature that we shall try to stress is that 
for the standard wave concepts we have in each case a matching probability 
concept. It need hardly be emphasized, but is still worth noting because of 
its importance, that we are operating within a framework that takes us 
outside of standard quantum mechanics, because we are assuming trajecto- 
ries for photons, as given by the random walks we characterize in the next 
section. Some readers will be familiar with the idea of trajectories for 
particles from the approach to quantum mechanics via stochastic mechan- 
ics by Edward Nelson and others. The important difference here is that we 
do not use a random walk that characterizes a standard diffusion from 
which we can derive the diffusion equation of Brownian motion, but rather 
use a random walk from which we can derive a wave equation instead. In 
our judgement it is this critical change in approach that makes possible a 
thoroughgoing particle explanation of interference as in, for example, the 
classical two-slit experiment. It is fair to say that our inspiration for this 
paper was the derivation of the telegrapher equation in Orsingher (1986) 
from a random walk different from the one used here. 

2. THE R A N D O M  WALK 

We restrict ourselves to two spatial dimensions, because it simplifies 
the presentation, but there is no essential change in going from two to three 
dimensions. We do formulate ideas in such a way that the theory is 
relativistically covariant. We list six assumptions about the random walk of 
photons. (Extension of the analysis to electrons will be considered in a later 
paper.) 

1. A photon is emitted from a source with an expected direction in the 
plane which we characterize by an angle 0 from a fixed axis. 

2. This expected direction 0 of emission constitutes a state for the 
photon. In the present analysis, the state of 0 of a photon does not 
change in the absence of charges. 

3. What the photon executes is then a random walk parallel to the Xo 

and Yo axes, each at a 45 ~ angle from the direction state 0. The random 
walk is characterized by going only forward, which sharply differen- 
tiates it from diffusion random walks. At each step the photon has 
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a probability 1/2 of going one step forward parallel to the y axis 
and probability 1/2 of going one step forward parallel to the x axis. 

4. The point source S has periodic emission of photons uniformly in 
all directions, which gives us a natural circular symmetry. Later we 
spell out details of the periodic emission. 

5. Here we apply the random-walk model to monochromatic light of 
a fixed energy only, so we do not need to introduce a separate 
parameter of energy for photons as we would in other cases. 

6. The velocity of a photon in each local step in the random walk is 
x/~c. As we shall see in a moment, it easily follows from this that 
the velocity of each mean distribution normal to the direction 0, 
moving from n to n + 1 steps in direction 0, has velocity c. 
[Feynman (1985, pp. 87-90) has a good discussion of this point, 
i.e., of photons moving locally at a speed greater than c, in his 
popular book on quantum electrodynamics.] 

Figure 1 shows particles in a given direction state 0 and what their 
distribution is after a certain number of steps. Line segments D 1 shows the 
distribution on three points with probability 1/4 for each of the endpoints 
and probability 1/2 for the middle point. Notice how simple these calcula- 
tions are. They are just standard calculations for a binomial distribution 
with p = I/2. Line segment D2 shows a distribution of four points for 
n = 3; all photons leaving the point source with direction state 0 lie on one 
of these four points after three steps and the probability for each of these 

Fig. 1. 
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Mean distribution of photons after two steps (D1) and after three steps (D2). 
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four points is determined immediately from the standard binomial distribu- 
tion, namely, the two interior points each have probability 1/3 and the two 
endpoints have probability 1/6. As the number of steps increases, it is 
obvious from the definition of the random walk, and also from Fig. 1, that 
the variance of the distribution lying on a line normal to the direction state 
increases without limit. On the other hand, and a critical point for having 
the properties of waves reflected in the probability distribution, the vari- 
ance in the direction state 0 of the mean distribution of photons after n 
steps when they have been emitted from a point source is zero, because 
they all lie on a line segment which is normal to the direction 0 and whose 
endpoints lie on the xo and Yo axes. We call these line segments distribution 
domains. We think of the distribution domains, together with the probabil- 
ity distributions on them, as wavefronts. It is easy to see that these 
"wavefronts" have velocity c from the characterization of the random walk 
by computing the distance in the direction 0 between two successive 
distribution domains. 

This can also be seen in Fig. 2, which shows not the entire distribution, 
but a conditional part of a distribution, something important as we pass 
through barriers as we do in the double-slit experiment. In the case of Fig. 
2 we can generalize from having a point source to the usual recursive 
relation for n steps; in other words, if we have a certain conditional 

0 
Y 

Yo 

X o 

D3 

>X 
Fig. 2. Conditional distributions of photons. 
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distribution after n steps we can then compute the conditional distribution 
of  photons after n + m steps. Thus, for example, line segment D 1 reflects a 
conditional distribution after n = 5, line segment D2 with m = l, line 
segment D3 with m = 3. 

In Fig. 3 we can see how the random walk approximates a spherical 
wavefront. We have shown the distribution domains after n steps. The scale 
of  the drawing is such that the difference between the radii of  the two 
circles corresponds to taking just one step. What  we have done here is 
randomize uniformly the direction state 0 of  the emission of photons so 
that we have circular symmetry. We emphasize that in Fig. 3 what is shown 
is the complete distribution for particles being emitted in all directions from 
a source. I f  one takes any line segment perpendicular to a radius of  the 
inner circle, that line segment is the distribution domain tangent to the 
inner circle and with endpoints on the outer circle after n steps for emission 
in the direction of  the radius. Of course, the filled-in area between step n 
(inner circle) and n + 1 (outer circle) is the random-walk finite analog of  a 
spherical wave. 

Fig. 3. Distribution domains for uniformly randomized direction state 0. 
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To emphasize how many different ways conditional distributions arise, 
we show in Fig. 4 the conditional region in which a photon can move given 
that it has at step n reached a certain point in the random walk. Roughly 
put, as the figure makes clear, the domain of possible paths after step n for 
the particle consists of the positive region bounded on one side by a line 
parallel to the xo axis and on the other side by a perpendicular line parallel 
to the Yo axis. In Fig. 4 the boundaries of  this region are marked R 1. We 
show a similar construction a couple of steps later in the same figure 
marked as bounding region R2. 

To complete our physical description of  the general situation we need 
to make some further remarks about the periodic character of the point 
source for emission of photons. The periodic character of emission is of 
course a property of the source and not of individual photons. Here we 
simply follow classical results and assume that the emission follows a cosine 
periodic function. In particular we assume the following about the source. 

1. The source is emitting light by oscillating harmonically, which 
produces monochromatic light of a given energy. Thus the proba- 
bility distribution in time for emitting photons in a given direction 
state follows a sine or cosine law typical of a harmonic oscillator. In 
particular, we assume a cosine function of  the form C1 (1 + cos cgt). 

0 
Y 

R2 

X 0 

S >x  
Fig. 4. Conditional regions for photon movement. 
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2. It is implicit, but we make explicit the assumption that the source 
is also circularly symmetric in its emission of light. 

We know some important properties of the photon emission of  the 
source. First, from the property already mentioned about the zero variance 
in the direction state, if a distribution domain is at a radial distance d at 
time t from the sou r~  S, then we know its radial distance at time t + nat. 
This feature is essential for preserving in the various probability distribu- 
tions the wave form that plays such an important role in the wave theory 
of light. On the other hand, the variance of the distribution on the 
distribution domain normal to the direction 0 increases as a function of  r, 
the radial distance from the source S. This increase in variance implies a 
spreading of  the particles and thus a decrease in the projection of  the 
wave form on the direction 0 of  the probability distribution, as shown in 
Fig. 5. 

It is convenient for our later discussion to introduce p(x, y, t) to mean 
the probability distribution for x and y at time t. This is of  course not a 
probability that characterizes the trajectories, but is just a mean probability 
at the time t for photons in the x, y plane. A restriction here is that t > t ' ,  
where t '  is the time the photons were emitted from the source. Corre- 
spondingly, for a fixed x and y, we get a distribution in t for a fmite time 
interval. 

g/ - - ' -  po (x, Y, t) 

Radial distance from source 

Fig. 5. Cross section of a mean probability distribution with shape of a spreading wave in 
direction 0. 
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3. INTERFERENCE 

As already indicated, we restrict ourselves to analyzing the classical 
two-slit experiment showing interference of light. The random-walk analy- 
sis of the two-slit experiment is shown in schematic form in Fig. 6. The 
figure is restricted to showing distribution domains rather than distribu- 
tions moving in the direction 0. The direction state is at the angle 0 with the 
line perpendicular to the segment between the two slits. The source is 
located on the perpendicular bisector of this segment. The important things 
to notice are the succession of plane "waves," each of which is a probabil- 
ity distribution of particles, starting with the domain D 1, proceeding to 
D2, and then to D3. In the case of D1, on the left side we can see the 
left-hand end segment of D1 passing through the left slit. From the 
orientation of the direction of emission we expect most of the particles 
being emitted in direction state 0 to pass through the right-hand slit. It is 
important to note that some of the particles actually pass through the 
second slit. Of course, when we emphasize this point remember that any 
given photon passes through only one slit, either the left or right one, but 
never both. As we move on to D2 we can see that the distribution is now 
broken into two pieces being created by the barrier of the segment between 
the two slits. So we now have the case of D2, a left-hand segment, a space 
with no particles in the distribution because of the segment barrier between 
the two slits, and then the right-hand piece of the D2 distribution of 
particles. Finally, with mean distribution D3 we have now still two pieces, 
but one piece is entirely through the slit and the other piece is in front of 

Fig. 6. Splitting up of mean distributions and their domains on passage through slits. 
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the slit, where all the photons on the second piece on the right will be 
absorbed by the barrier. What is particularly interesting is that the contin- 
uous piece of the distribution, lying beyond the slits after having passed 
through the slits, shows a small piece of superposition (to use a classical 
term) arising from the particles passing through the left slit and the 
particles passing through the right slit. 

It is not possible in this short paper to exhibit the detailed computa- 
tions leading to the distribution on the absorbing screen in the case of the 
two-slit experiment. What we would like to do in conclusion is to show 
various aspects of the random-walk approach that are crucial to getting the 
interference pattern. We emphasize that these arguments do not prove that 
we will get the full interference pattern. What they do is to give a sense of 
key sources of the interference from a probabilistic standpoint. 

In Fig. 7 we show in the simplest case how we can have for a single fixed 
direction 0 the result that a greater number of particles arrive at P '  which 
is further from the symmetry center of the absorbing screen than point P. 
Note of course that both P and P '  are to the right of the center. The reason 
for this "local maximum" is obvious. To the left of P is a forbidden region 
for any particles to arrive that have direction state 0, because the line leading 
to point P makes a 45 ~ angle with the direction 0, i.e., is the Yo axis. 

Fig. 7. Local maximum on the screen after passage through a single slit o f  a single mean 
distribution. 
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We now turn to the last point that we have space to discuss. This is how 
the classical consideration of the periodicity of the source is also used in our 
random-walk approach to interference. The situation that we will consider 
here is examining the intensity at a given point P as it is contributed to by 
two distinct direction states 01 and 02 of photons. For comparison of the 
effect we shall, without showing it in Fig. 8, consider a variation in the angle 
of 02 to give us 0~. What is familiar in the classical discussions of the two-slit 
experiment is that 02 can be varied so that the number of steps from the 
source to P is such that the difference in the number of steps between the 
path with the direction 01 and that with the direction 02 is such that they 
are exactly in phase, in the sense of the phase of the periodic emission, on 
arrival at P. This means for all times t of emission these two direction states 
of photons are adding to each other, to give, from the standpoint of these 
two direction states, the maximum intensity at P. Now by slight variation 
in the angle of 02 we get 0~ such that the difference in the two distances for 
the two angles of emission of photons is completely out of phase in terms 
of the periodic cosine function of emission. In this case for these two 
direction states the intensity at the point P on the screen will be minimal. 
Notice that this difference is wholly to be accounted for in terms of the 
distribution of particles, the periodicity of emission, and the difference in 
number of steps for the two direction states. 

Fig. 8. Interference arising from the path difference of two direction states and the periodic 
source of emission. 
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Finally, we emphasize that a distribution and its distribution domain, 
but not an individual photon, can simultaneously go through both slits, as 
two separate conditional distributions. 
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